Novel Transannular Reactions in the Acid Hydrolysis of Diazotized *syn-* and *anti-* 4-Amino[2.2](1,4)naphthalenoparacyclophanes

Yoshihiro Takada, Kazuhiko Tsuchiya, Senji Takahashi and Nobuo Mori*

Department of Chemistry, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

The diazonium ions derived from the title syn- and anti-4-aminocyclophanes **1a** and **4a** in aqueous solution undergo transannular reactions to give 17-hydroxy[2.2](1,4)naphthalenoparacyclophane **3a** and 9,10-dihydro-1,9:4,10-diethano-9,10-ethenoanthracene **6a**, respectively. Deuterium-tracer experiments suggest that the reaction of diazotized **1a** proceeds *via* a pathway involving transannular diazo coupling followed by generation of a 16,17-didehydro intermediate. On the other hand, the reaction pathway of diazotized **4a** involves dediazoniation followed by transannular electrophilic addition.

The anomalous rates and products of electrophilic substitutions of layered aromatics such as [2.2]paracyclophanes have been generally accepted as being due to transannular electronic interaction between the facing aromatic rings,¹ but it is not yet known whether such interactions exert an influence on nucleophilic substitutions. In the hope of clarifying this problem, we have studied the acid hydrolysis of [n.n]paracyclophanediazonium salts, since reactions of ordinary arenediazonium salts in aqueous acid proceed exclusively via an aryl cation mechanism, not via an aryne one.² Surprisingly, some [n.n] paracyclophanediazonium salts have been found to undergo transannular rearrangement or addition reactions,³ which are not known in the cyclophane chemistry. We report here the results of a mechanistic investigation of the transannual reactions of diazotized syn- and anti-4-amino[2.2](1,4)naphthalenoparacyclophanes 1a and 4a in aqueous solution.

Results and Discussion

Hydrolysis of Diazotized 1.—Amine 1a in dilute sulphuric acid, or in a mixture of dilute sulphuric acid and acetic acid, was diazotized with aqueous sodium nitrite and then hydrolysed at room temperature. After being worked up in the usual manner, the reaction mixture gave the corresponding syn-4-hydroxycyclophane 2a and its 17-hydroxy isomer 3a in 60 and 38% yields by GLC.

The rearrangement leading to 3a is an anomalous reaction. For this reaction, two possible pathways were visualized. One involves transannular electrophilic attack on the 17-position by the aryl cation I arising from diazotized 1a, followed by deprotonation with external bases such as water, to form an intermediate II having a direct bond between C-4 and C-17. This 4-17-bond is then cleaved with aqueous acid to give 2a and 3a. However, this pathway involving formation of II from I seems improbable on steric grounds. An examination of molecular models indicates that in I C-4 and C-17 lie in unfavourable positions for bonding with one another to give II and this molecule itself involves substantial distortion and strain. An alternative pathway involves transannular electrophilic attack by diazotized 1a on the 17-position, followed by deprotonation, to form an azo intermediate III having an azo linkage between C-4 and C-17, as formulated in Scheme 1. This intermediate III undergoes protonation on either ring with loss of N_2 and addition of H_2O to give 2a and 3a. Formation of III from diazotized 1a is more favourable on a steric basis than the former case. As can be seen from Scheme 1, the 4-position in 3a and the 17-position in 2a should have hydrogen atoms

transferred from external acids. In order to test this hypothetical pathway, several deuterium-labelled starting materials were prepared and treated under similar conditions. From diazotized syn-4-amino-5,7,8-trideuterio[2.2](1,4)naphthalenoparacyclophane 1b, the corresponding syn-4-hydroxycyclophane 2b and its 17-hydroxy isomer 3b were obtained. On the other hand, diazotized syn-4-amino-12,13,16,17,18,19-hexadeuterio[2.2]-(1,4)naphthalenoparacyclophane 1c gave the corresponding syn-4-hydroxy cyclophane 2c and a 17-hydroxy-12,13,18,19tetradeuterio cyclophane 3c. According to ¹H NMR spectroscopy, 3c had 1.0 atoms of hydrogen at the 4-position and also at the 16-position. Diazotized 1c did not give any isomers of 3c such as a 16-hydroxy compound having hydrogen at the 17position or a 17-hydroxy compound having hydrogen at the 18position. These results allow us to suggest an aryne pathway in which the azo intermediate III undergoes protonation on C-4 and loss of N₂, followed by deprotonation to generate a 16,17didehydro intermediate IV. This aryne IV undergoes regioselective addition of aqueous acid, due to a steric hindrance of the *peri*-bridge, to give 3c. It should be noted that the azolinking site is not necessarily C-17 but may be either C-16 or C-17. Aryne generation in aqueous acid is not yet known, but the aryne pathway described above may explain the formation of 3c in a way consistent with the fact that treatment of 1and 2-halonaphthalenes with base in non-aqueous solution generates exclusively the same 1,2-didehydronaphthalene to give preferentially 2-substituted naphthalenes.⁴

On the other hand, 2c had no hydrogen atom either at the 16- or 17-position, indicating that 2 is produced *via* attack by H_2O on the aryl cation I (usual S_N1 process). This result does not exclude the azo-coupling pathway leading to 3. It is reasonable that both processes take place competitively.

It is further noted that there was no generation of a 4,5didehydro intermediate from I, since 2b from 1b had deuterium, not hydrogen, at the 5-position.

Hydrolysis of Diazotized 4.—Hydrolysis of diazotized 4a gave the corresponding anti-4-hydroxycyclophane 5a and a bridged dibenzobarrelene (9,10-dihydro-1,9:4,10-diethano-9,10-ethenoanthracene) 6a in 60 and 35% yield by GLC but no isomers of 5a.

For the transannular addition leading to **6a**, two possible pathways were considered. One involves generation of a 4,5didehydro intermediate VI from diazotized **4a** possibly *via* the aryl cation V. The aryne VI could undergo not only cycloaddition to give **6a**, but also addition of aqueous acid to give **5a**. Thus, **6a** should have no transferred hydrogen, but **5a**

Scheme 1.

should have a hydrogen atom transferred from external acid at the 5-position. Obviously V itself would undergo addition of H_2O . An alternative pathway involves transannular electrophilic attack by the aryl cation on the 14-position, followed by deprotonation, to give 6a, as described in Scheme 2. Also in this case, 6a has no transferred hydrogen atom at any position. In order to make a choice between the two possibilities, deuteriumtracer experiments were designed to show which of V and VI is an intermediate leading to 5a. anti-4-Amino-5,7,8-trideuterioand anti-4-amino-12,13,16,17,18,19-hexadeuterio [2.2](1,4)naphthalenoparacyclophane 4b and 4c, were used as deuteriumlabelled materials. Diazotized 4b gave the corresponding anti-4hydroxycyclophane 5b and a 2,3-dideuterioanthracene 6b. The product 5b had no hydrogen atom at the 5-position, indicating that 5 was produced via the usual S_N1 process involving V. On this basis, it is presumed that 6 was produced via the latter pathway involving a σ complex VII, not *via* the former aryne pathway. On the other hand, diazotized 4c gave the corresponding anti-4-hydroxycyclophane 5c and a hexadeuterioanthracene 6c, indicating that no deuterium-hydrogen exchange took place on the naphthalene ring.

Finally, it should be noted that there are two known reactions in non-aqueous media leading to bridged benzobarrelenes similar to 6. One is the reaction of 5-bromo[3.3]paracyclophane with potassium butoxide, which involves generation and subsequent cycloaddition of an aryne.⁵ The other involves transannular Diels-Alder addition of 4,7-dimethoxy[2.2](9,10)anthracenoparacyclophane, followed by acid-catalysed elimination of methanol.⁶ It is interesting to note that these reaction pathways are different from one another and also from the present aryl cation pathway.

Experimental

General.—All m.p.s are uncorrected. GLC analyses were performed by using a Shimazu GC-4CM apparatus with a column of Silicone OV-17 (13%)-Chromosorb W (1.5 m) or Silicone SE-30 (10%)-Celite 545 (1.5 m) (N₂ as carrier gas). Preparative TLC treatments were carried out on glass plates (20×20 cm) coated with Merck Kieselgel 60PF₂₅₄ (1.25 mm). IR spectra were measured on a Perkin-Elmer 1600 FT-IR spectrometer. ¹H NMR spectra were measured for CDCl₃ solutions containing tetramethylsilane on a JEOL JNM-FX 100 (100 MHz), JEOL JNM-GX 400 (400 MHz), or JEOL JNM-GSX 500 (500 MHz) spectrometer. Mass spectra [EI] were measured on a Hitachi M-80 spectrometer equipped with an M-003 data processor.

The observed NMR chemical shifts were assigned on the basis of coupling constants and patterns and/or by comparison with analogues. The structures of new compounds obtained were based upon extensive spectroscopic characterization except for the dibenzobarrelene **6a** which was further subjected to X-ray crystal structure diffraction, details of which were reported elsewhere.⁷

Preparation of 1a and 4a.—A solution of 2,5-bis(bromomethyl)nitrobenzene (7a; 11 g) and 1,4-bis(sulphydrylmethyl)naphthalene⁸ (8a; 3.09 g) in benzene (600 cm³) was added

dropwise over 2 days to a rapidly stirred solution of KOH (11 g) in 95% ethanol (1.5 dm³) at room temperature under nitrogen. After being stirred for 1 day, the solution was neutralized with acetic acid. Following removal of the solvent, the residue was extracted with CHCl₃ and the extract was washed with brine and dried over Na₂SO₄. Removal of the solvent and subsequent recrystallization of the yellow residue from CHCl₃ gave *anti*-5nitro-2,11-dithia[3.3](1,4)naphthalenoparacyclophane (10a) as yellow crystalline powders (1.30 g). Silica gel column chromatograph of the mother liquor using benzene gave an additional crop of 10a (0.28 g, total yield 43.1%) and its *syn*-isomer 9a as yellow crystalline powders (0.7 g, 19%).

9a: m.p. 239.3–241.4 °C; $\delta(100 \text{ MHz})$ 3.71–4.64 (8 H, m), 6.77 (2 H, d, *J*/Hz: 2.0; 14-H and 15-H), 7.03 (2 H, d, *J*/Hz: 1.3; 8-H and 9-H), 7.13 (1 H, s, 6-H), 7.34–7.67 (2 H, m, 19-H and 20-H) and 7.86–8.08 (2 H, m, 18-H and 21-H).

10a: m.p. 257 °C (decomp.); $\delta(100 \text{ MHz}) 3.47-4.53$ (8 H, m), 6.52 (2 H, d, *J*/Hz: 2.5; 8-H and 9-H), 6.72 (2 H, s, 14-H and 15-H), 7.46-7.63 (2 H, m, 19-H and 20-H), 7.48 (1 H, s, 6-H) and 7.92-8.09 (2 H, m, 18-H and 21-H).

A solution of **9a** (450 mg) in CHCl₃ (200 cm³) and acetic acid (40 cm³) was mixed with 35% H₂O₂ (7 cm³) at room temperature and stirred for 7 days, during which additional 35% H₂O₂ (6 cm³) was added in six portions day by day. The resulting precipitate was isolated by filtration, washed successively with methanol and ether, and then dried *in vacuo*. In a flash-vacuum pyrolysis apparatus,⁹ the bis-sulphone (600 mg) obtained was pyrolysed in six portions at 400 °C for 5 h with nitrogen-sweeping at 1 mmHg. The combined crude products were chromatographed on silica gel with benzenehexane to give *syn*-4-nitro[2.2](1,4)naphthalenoparacyclophane **11a** as yellow prisms (24 mg, 5.7%) and its *anti*-isomer **12a** as yellow needles (59 mg, 14%). Similar results were obtained using **10a**.

11a: m.p. 197.2–202.1 °C; δ (400 MHz) 2.92–3.11 (3 H, m), 3.20–3.34 (2 H, m), 3.88–4.04 (2 H, m), 4.21–4.28 (1 H, m), 6.58 (1 H, d, *J*/Hz: 7.8; 8-H), 6.62 (1 H, d, *J*/Hz: 1.9; 5-H), 6.70 (1 H,

dd, J/Hz: 1.9 and 7.8; 7-H), 6.77 (1 H, A of AB pattern, J/Hz: 7.3; 12-H or 13-H), 6.85 (1 H, B of AB pattern, J/Hz: 7.3; 13-H or 12-H), 7.28 (1 H, br d, J/Hz: 7.7; 17-H or 18-H), 7.47 (1 H, br d, J/Hz: 7.5; 18-H or 17-H), 7.71 (1 H, d, J/Hz: 8.3; 16-H or 19-H) and 7.77 (1 H, d, J/Hz: 8.3; 19-H or 16-H); m/z 303 (M⁺, 15%), 154 (100) and 149 (3).

12a: m.p. 165.5–167.5 °C; $\delta(400 \text{ MHz})$ 2.50–3.40 (5 H, m), 3.58–4.10 (3 H, m) 5.63 (1 H, d, J/Hz: 7.8; 8-H), 5.82 (1 H, dd, J/Hz: 2.0 and 7.8; 7-H), 6.67 (1 H, A of AB pattern, J/Hz: 7.5; 12-H or 13-H), 6.76 (1 H, B of AB pattern, J/Hz: 7.5; 13-H or 12-H), 7.19 (1 H, d, J/Hz: 2.0; 5-H), 7.28–7.47 (2 H, m, 17-H and 18-H) and 7.52–7.69 (2 H, m, 16-H and 19-H); m/z 303 (M⁺, 17%), 154 (100) and 149 (4).

The syn-nitro compound **11a** (110 mg) in methanol (5 cm³) and ethyl acetate (7 cm³) was hydrogenated in the presence of PtO₂ (ca. 10 mg) at room temperature under atmospheric pressure until hydrogen was no longer taken up. After being filtered, removal of the solvent gave **1a** as pale yellow crystals (100 mg, 100%), m.p. 135–139 °C; $v_{max}(KBr)/cm^{-1}$ 3380 and 3470 (NH₂). Similar hydrogenation of **12a** gave **4a** as pale yellow crystals in 100% yield, m.p. 162–164 °C; $v_{max}(KBr)/cm^{-1}$: 3375 and 3470 (NH₂).

Preparation of 1b and 4b.—These were obtained starting from 2,5-bis(chloromethyl)-3,4,6-trideuterionitrobenzene 7b and 8a by almost the same method as described above. The compound 7b was prepared from commercially available tetradeuterioterephthalic acid (98 atom% D) in the usual manner including its esterification with methanol, LiAlH₄ reduction of the dimethyl ester (m.p. 139.3–139.8 °C) in THF, chlorination of the diol (m.p. 117.4–117.8 °C) with 36% HCl, and nitration of the dichloride (m.p. 96.5–98.5 °C) with 96% H₂SO₄–60% HNO₃, pale yellow needles, m.p. 37.6–38.4 °C. In this process, deuterium–hydrogen exchange could not be detected by ¹H NMR spectroscopy.

Coupling of **7b** and **8a** with KOH gave *syn*-6,8,9-trideuterio-5-nitro-2,11-dithia[3.3](1,4)naphthalenoparacyclophane **9b** as

a pale yellow crystalline powder in 15.4% yield and its antiisomer (10b) as a yellow crystalline powder in 38.4% yield.

9b: m.p. 232-235 °C; δ(500 MHz) 3.79 (1 H, d, J/Hz: 16.1), 3.85 (1 H, d, J/Hz: 15.4), 3.94 (1 H, d, J/Hz: 15.0), 3.95 (1 H, d, J/Hz: 15.4), 4.04 (1 H, d, J/Hz: 14.7), 4.44 (2 H, d, J/Hz: 16.1), 4.45 (1 H, d, J/Hz: 14.7), 6.74 (1 H, A of AB pattern, J/Hz: 7.3; 14-H or 15-H), 6.78 (B of AB pattern, J/Hz: 7.3; 15-H or 14-H), 7.58-7.61 (2 H, m, 19-H and 20-H), 8.03-8.05 (1 H, m, 18-H or 21-H) and 8.07–8.09 (1 H, m, 21-H or 18-H); m/z 370 (M⁺, 100%), 154 (41) and 152 (18) (Found: M⁺, 370.0891. C₂₀H₁₄D₃NO₂S₂ requires M, 370.0889).

10b: m.p. 255–258 °C (decomp.); δ(500 MHz) 3.81 (1 H, d, J/Hz: 15.0), 3.86 (2 H, d, J/Hz: 2.9), 4.01 (1 H, d, J/Hz: 15.0), 4.05 (1 H, d, J/Hz: 14.7), 4.47 (1 H, d, J/Hz: 10.6), 4.50 (1 H, d, J/Hz: 10.3), 4.59 (1 H, d, J/Hz: 15.0), 6.79 (1 H, A of AB pattern, J/Hz: 7.0; 14-H or 15-H), 6.84 (1 H, B of AB pattern, J/Hz: 7.0; 15-H or 14-H), 7.50 (1 H, m, 19-H or 20-H), 7.62 (1 H, m, 20-H or 19-H), 7.98 (1 H, d, J/Hz:, 8.4; 18-H or 21-H) and 8.06 (1 H, d, J/Hz: 8.4; 21-H or 18-H); m/z 370 (M⁺, 100%), 306 (14), 154 (51) and 152 (22) (Found: M⁺, 370.0899).

 H_2O_2 oxidation and subsequent pyrolysis of 9b or 10b gave syn-5,7,8-trideuterio-4-nitro[2.2](1,4)naphthalenoparacyclophane 11b in 8% yield and its anti-isomer 12b in 25% yield.

11b: m.p. 155-158 °C; 8(500 MHz) 2.93-3.10 (3 H, m), 3.23 (1 H, m), 3.31 (1 H, m), 3.91 (1 H, dd, J/Hz: 9.9 and 13.6), 4.00 (1 H, m), 4.26 (1 H, m), 6.77 (1 H, A of AB pattern, J/Hz: 7.3; 12-H or 13-H), 6.85 (1 H, B of AB pattern, J/Hz: 7.3; 13-H or 12-H), 7.28 (1 H, m, 17-H or 18-H), 7.47 (1 H, m, 18-H or 17-H), 7.71 (1 H, d, J/Hz: 8.1; 16-H or 19-H) and 7.77 (1 H, d, J/Hz: 8.4; 19-H or 16-H); m/z 306 (M⁺, 11%), 154 (100) and 152 (8) (Found: M⁺, 306.1448. C₂₀H₁₄D₃NO₂ requires M, 306.1448).

12b: m.p. 165-166 °C; δ(500 MHz) 2.78-2.84 (1 H, m), 2.91-2.97 (1 H, m), 3.07-3.19 (2 H, m), 3.21-3.28 (1 H, m), 3.77-3.87 (2 H, m), 4.00 (1 H, dd, J/Hz: 9.5 and 13.2), 6.76 (1 H, A of AB pattern, J/Hz: 7.0; 12-H or 13-H), 6.79 (1 H, B of AB pattern, J/Hz: 7.3; 13-H or 12-H), 7.44–7.48 (2 H, m, 17-H and 18-H) and 7.69–7.73 (2 H, m, 16-H and 19-H); m/z 306 (M⁺, 16%), 154 (100) and 152 (8) (Found: M⁺, 306.1458).

Catalytic hydrogenation of 11b and 12b performed in the presence of PtO₂ or 10% Pd-C gave 1b and 4b, respectively, in quantitative yield.

1b: m.p. 137–138 °C; v_{max}(KBr)/cm⁻¹: 3378 and 3456 (NH₂). **12b**: m.p. 170–173 °C; $v_{max}(KBr)/cm^{-1}$: 3365 and 3458 (NH₂).

Preparation of 1c and 4c.—These were obtained starting from 7a and 2,3,5,6,7,8-hexadeuterio-1,4-bis(sulphydrylmethyl)naphthalene 8c in a similar manner. The compound 8c was prepared starting from commercially available octadeuterionaphthalene (98 atom% D) by almost the same method as for 8a; m.p. 78-80 °C; δ(100 MHz) 1.87 (2 H, t, J 7.0 Hz) and 4.17 (4 H, d, J/Hz: 8.0); $v_{max}(KBr)/cm^{-1}$ 2550 (SH).

Coupling of 7a and 8c gave a mixture of syn-14,15,18,19,20,21hexadeuterio-5-nitro-2,11-dithia[3.3](1,4)naphthalenoparacyclophane 9c and its anti-isomer 10c in 47% yield. Preparative TLC treatment of a sample of the mixture gave 9c and 10c.

9c: m.p. 199-103 °C; δ(100 MHz) 3.74-4.68 (8 H, m), 7.09 (2 H, d, J/Hz: 1.0) and 7.20 (1 H, s).

10c: m.p. 202-205 °C; δ(100 MHz) 3.34-4.56 (8 H, m), 6.60 (2 H, d, J 2.5 Hz) and 7.58 (1 H, s).

H₂O₂ oxidation and subsequent pyrolysis of the mixture of 9c and 10c gave syn-12,13,16,17,18,19-hexadeuterio-4-nitro-[2.2](1,4)naphthalenoparacyclophane 11c as yellow prisms (7.1% yield) and its *anti*-isomer 12c as yellow needles (21.7%).

11c: m.p. 147-151 °C; δ(400 MHz) 2.95-3.12 (3 H, m), 3.21-3.36 (2 H, m), 3.89-4.04 (2 H, m), 4.20-4.30 (1 H, m), 6.59 (1 H, d, J/Hz: 7.9, 8-H), 6.62 (1 H, d, J/Hz: 1.5; 5-H) and 6.71 (1 H, dd, J/Hz: 7.5 and 1.5; 7-H); m/z 309 (M⁺, 20%), 160 (100) and 149 (3). 12c: m.p. 149–151.5 °C; δ(400 MHz) 2.77–2.85 (1 H, m), 2.91-2.98 (1 H, m), 3.07-3.30 (3 H, m), 3.76-3.87 (2 H, m), 3.98-4.03 (1 H, m), 5.71 (1 H, d, J/Hz: 7.6; 8-H), 5.88 (1 H, dd, J/Hz: 7.7 and 2.1; 7-H) and 7.26 (1 H, d, J/Hz: 2.0; 5-H); m/z 309 (M⁺, 20%), 160 (100) and 149 (3).

Catalytic hydrogenation of 11c and 12c gave 1c and 4c, respectively, as pale yellow crystals in quantitative yield.

1c: m.p. 128–133 °C; v_{max}/cm^{-1} : 3380 and 3460 (NH₂). **4c**: m.p. 143–150 °C; v_{max}/cm^{-1} : 3360 and 3460 (NH₂).

Hydrolysis of Diazotized 1.-The amine 1a (50 mg, 0.18 mmol) in a mixture of H_2O (3 cm³), H_2SO_4 (2 cm³) and MeCO₂H (2 cm³) was diazotized with aq. NaNO₂ (24 mg, 0.34 mmol) at 0 °C for 30 min, treated with a small amount of urea and then stirred at 20-25 °C for 2 h. The solution was neutralized with aq. NaHCO₃ and extracted into CH₂Cl₂. The extract was washed with brine, dried (MgSO₄) and evaporated under reduced pressure. The residue contained two main products, 2a and 3a, in 60 and 38% distribution (GLC). Preparative TLC with CH_2Cl_2 gave 2a as colourless needles (12 mg, 24%) and **3a** as colourless plates (7 mg, 14\%).

2a: m.p. 164-166 °C; δ(400 MHz) 2.66-2.75 (1 H, m), 2.78-2.83 (1 H, m), 2.99-3.09 (2 H, m), 3.17-3.24 (1 H, m), 3.43-3.50 (1 H, m), 3.79-3.94 (2 H, m), 3.19 (1 H, s, OH), 4.87 (1 H, d, J/Hz: 1.6; 5-H), 6.22 (1 H, dd, J/Hz: 1.7 and 7.8; 7-H), 6.41 (1 H, d, J/Hz: 7.8; 8-H), 6.69 (1 H, A of AB pattern, J/Hz: 7.3; 12-H or 13-H), 6.73 (1 H, B of AB pattern, J/Hz: 7.1; 13-H or 12-H), 7.31 (1 H, m, 17-H or 18-H), 7.43 (1 H, m, 18-H or 17-H), 7.76 (1 H, d, J/Hz: 8.1; 16-H or 19-H) and 8.06 (1 H, d, J/Hz: 8.3; 19-H or 16-H); m/z 274 (M⁺, 50%), 154 (100) and 120 (74); v_{max}(CCl₄)/cm⁻¹ 3598 (OH) (Found: M⁺, 274.1364. C₂₀H₁₈O requires M, 274.1358).

3a: m.p. 171-173 °C; δ(400 MHz) 2.83-2.93 (2 H, m), 2.98-3.13 (4 H, m), 3.62-3.75 (2 H, m), 4.88 (1 H, s, OH), 5.63 (1 H, dd, J/Hz: 1.7 and 7.7; 7-H or 8-H), 5.75 (1 H, dd, J/Hz: 1.7 and 7.6; 8-H or 7-H), 6.42 (1 H, dd, J/Hz: 1.7 and 7.8; 4-H or 5-H), 6.46 (1 H, dd, J/Hz: 1.7 and 7.8; 5-H or 4-H), 6.63 (1 H, A of AB pattern, J/Hz: 7.3; 12-H or 13-H), 6.69 (1 H, B of AB pattern, J/Hz: 7.3; 13-H or 12-H), 6.99 (1 H, dd, J/Hz: 2.6 and 8.8; 18-H), 7.04 (1 H, d, J/Hz: 2.5; 16-H) and 7.57 (1 H, d, J/Hz: 8.8; 19-H); m/z 274 (M⁺, 23%), 170 (100) and 104 (18); $v_{max}(CCl_4)/cm^{-1}$ 3608 (OH) (Found: M⁺, 274.1352).

In a similar manner, diazotization and subsequent hydrolysis of 1b gave 2b and 3b in 32 and 16% yield, respectively.

2b: m.p. 145.5–148.0 °C; δ(500 MHz) 2.70 (1 H, ddd, J/Hz: 4.8, 10.6 and 13.6), 2.78-2.82 (1 H, m), 3.00-3.08 (2 H, m), 3.18 (1 H, s, OH), 3.20 (1 H, ddd, J/Hz: 3.30, 10.6 and 13.6), 3.46 (1 H, ddd, J/Hz: 3.30, 9.9 and 13.6), 3.79-3.85 (1 H, m), 3.90 (1 H, ddd, J/Hz: 4.8, 9.9 and 13.6), 6.69 (1 H, A of AB pattern, J/Hz: 7.0; 12-H or 13-H), 6.73 (1 H, B of AB pattern, J/Hz: 7.0; 13-H or 12-H), 7.30 (1 H, ddd, J/Hz: 1.5, 7.0 and 8.1; 17-H or 18-H), 7.42 (1 H, ddd, J/Hz: 1.5, 7.0 and 8.1; 18-H or 17-H), 7.76 (1 H, d, J/Hz: 8.1; 16-H or 19-H) and 8.06 (1 H, d, J/Hz; 8.1; 19-H or 16-H); m/z 277 (M⁺, 78%), 154 (100) and 123 (58); $v_{max}(CCl_4)/$ cm⁻¹ 3597 (OH) (Found: M⁺, 277.1544. C₂₀H₁₅D₃O requires M, 277.1546). The NMR spectrum showed no benzene-proton signals.

3b: 164–168 °C; δ(500 MHz) 2.83–2.93 (2 H, m), 2.98–3.13 (4 H, m), 3.63-3.75 (2 H, m), 4.94 (1 H, s, OH), 5.75 (1 H, s, 4-H), 6.63 (1 H, A of B pattern, J/Hz: 7.3; 12-H or 13-H), 6.69 (1 H, B of AB pattern, J/Hz: 7.0; 13-H or 12-H), 7.00 (1 H, dd, J/Hz: 2.6 and 8.8; 18-H), 7.04 (1 H, d, J/Hz: 2.6; 16-H) and 7.57 (1 H, d, J/Hz: 8.8; 19-H); m/z 277 (M⁺, 40%), 170 (100) and 107 (13); $v_{max}(CCl_4)/cm^{-1}$ 3607 (OH) (Found: M⁺, 277.1545). By NMR spectroscopy, the 4-H of the sample integrated as 1.0 H, indicating 100% hydrogenation of that position.

In a similar manner, diazotized 1c gave 2c and 3c in 25 and 15% yield.

2c: m.p. 124-130 °C; δ(400 MHz) 2.66-2.74 (1 H, m), 2.77-

2.82 (1 H, m), 2.99–3.09 (2 H, m), 3.17-3.24 (1 H, m), 3.43-3.50 (1 H, m), 3.78-3.93 (2 H, m), 3.18 (1 H, s, OH), 4.87 (1 H, d, *J*/Hz: 1.8; 5-H), 6.22 (1 H, dd, *J*/Hz: 1.6 and 7.6; 7-H) and 6.41 (1 H, d, *J*/Hz: 7.6; 8-H); *m*/z 280 (M⁺, 69%), 160 (100) and 120 (58) (Found: M⁺, 280.1744. C₂₀H₁₂D₆O requires M, 280.1735).

3c: m.p. 130–134 °C; $\delta(400 \text{ MHz})$ 2.83–2.93 (2 H, m), 2.98– 3.13 (4 H, m), 3.62–3.75 (2 H, m), 5.03 (1 H, br s, OH), 5.63 (1 H, A of AB pattern, J/Hz: 7.8; 7-H or 8-H), 5.75 (1 H, B of AB pattern, J/Hz: 7.8; 8-H or 7-H), 6.42 (1 H, A of AB pattern, J/Hz: 7.8; 4-H or 5-H), 6.46 (1 H, B of AB pattern, J/Hz: 7.8; 5-H or 4-H) and 7.04 (1 H, s, 16-H); m/z 278 (M⁺, 31%), 174 (100) and 104 (16) (Found: M⁺, 278.1616. C₂₀H₁₄D₄O requires M, 278.1609). By NMR spectroscopy, the 4-H and 16-H of the sample integrated as 1.0 H.

Hydrolysis of Diazotized 4.—Diazotization and subsequent hydrolysis of amines 4 were carried out in a manner similar to that described for 1. The reaction of 4a gave 5a and 6a in 60 and 37% yield, respectively, by GLC. Preparative TLC of the crude product with CH_2Cl_2 gave 5a as colourless needles in 23% yield and 6a as colourless plates in 17% yield.

5a: m.p. 135–138 °C; $\delta(400 \text{ MHz})$ 2.56–2.67 (1 H, m), 2.78–2.86 (1 H, m), 2.94–3.06 (2 H, m), 3.18–3.28 (2 H, m), 3.68–3.85 (2 H, m), 4.40 (1 H, s, OH), 5.26 (1 H, dd, *J*/Hz: 1.7 and 7.8; 7-H), 5.46 (1 H, d, *J*/Hz: 7.7; 8-H), 5.59 (1 H, d, *J*/Hz: 1.6; 5-H), 6.69 (1 H, A of AB pattern, *J*/Hz: 7.3; 12-H or 13-H), 7.16 (1 H, B of AB pattern, *J*/Hz: 7.3; 13-H or 12-H), 7.35–7.42 (2 H, m, 17-H and 18-H), 7.66 (1 H, dd, *J*/Hz: 2.3 and 7.2; 16-H or 19-H) and 7.73 (1 H, dd, *J*/Hz: 2.3 and 7.2; 19-H or 16-H); *m*/z 274 (M⁺, 46%), 154 (100) and 120 (76); $v_{max}(CCl_4)/cm^{-1}$ 3607 (OH) (Found: M⁺, 274.1349. C₂₀H₁₈O requires M, 274.1358).

6a: m.p. 137–139 °C; $\delta(400 \text{ MHz})$ 2.79–2.88 (2 H, m), 3.24– 3.38 (6 H, m), 6.79 (2 H, s, vinyl protons), 6.80 (2 H, s, 2-H and 3-H), 6.94 (2 H, dd, J/Hz: 3.1 and 5.3; 6-H and 7-H) and 7.32 (2 H, dd, J/Hz: 3.1 and 5.3; 5-H and 8-H); m/z 256 (M⁺, 100%), 228 (17), 202 (7), 120 (5) and 113 (7) (Found: M⁺, 256.1271. C₂₀H₁₆ requires M, 256.1253).

Diazotized **4b** gave **5b** and **6b** as colourless crystals in 32 and 26% yield, respectively.

5b: m.p. 168.5-169.7 °C; $\delta(500 \text{ MHz}) 2.58-2.64$ (1 H, m), 2.78-2.84 (1 H, m), 2.94-3.05 (2 H, m), 3.19-3.27 (2 H, m), 3.68-3.74 (1 H, m), 3.82 (1 H, br t, J/Hz: 11.2), 4.41 (1 H, s, OH), 6.69 (1 H, d, J/Hz: 7.1; 12-H or 13-H), 7.16 (1 H, d, J/Hz: 7.1; 13-H or 12-H), 7.35-7.41 (2 H, m, 17-H and 18-H), 7.65-7.67 (1 H, m, 16-H or 19-H) and 7.72-7.74 (1 H, m, 19-H or 16-H); m/z 277

 $(M^+, 46_{\odot})$, 154 (100) and 123 (63) (Found: M⁺, 277.1543. $C_{20}H_{15}D_{3}O$ requires 277.1546).

6b: m.p. 173.5–175.5 °C; $\delta(500 \text{ MHz})$ 2.82–2.87 (2 H, m), 3.25–3.38 (6 H, m), 6.79 (2 H, s, vinyl protons), 6.94 (2 H, dd, J/Hz: 3.1 and 5.3; 6-H and 7-H) and 7.31 (2 H, dd, J/Hz: 3.1 and 5.3; 5-H and 8-H); m/z 258 (M⁺, 100%), 232 (21), 204 (8), 121 (7) and 114 (8) (Found: M⁺, 258.1378. C₂₀H₁₄D₂ requires M, 258.1378).

From diazotized 4c were obtained 5c and 6c in 26 and 24% yield, respectively.

5c: m.p. 99.5–103.5 °C; δ (400 MHz) 2.58–2.66 (1 H, m), 2.79– 2.85 (1 H, m), 2.95–3.07 (2 H, m), 3.20–3.29 (2 H, m), 3.69–3.86 (2 H, m), 4.41 (1 H, s, OH), 5.27 (1 H, dd, *J*/Hz: 1.5 and 7.6; 7-H), 5.47 (1 H, d, *J*/Hz: 7.6; 8-H) and 5.61 (1 H, d, *J*/Hz: 1.5; 5-H); *m*/*z* 280 (M⁺, 58), 160 (100) and 120 (69) (Found: M⁺, 280.1752. C₂₀H₁₂D₆O requires M, 280.1735).

6c: m.p. 120–121.5 °C; δ(400 MHz) 2.82–2.89 (2 H, m), 3.24– 3.39 (6 H, m) and 6.80 (2 H, s, 2-H and 3-H); m/z 262 (M⁺, 100), 234 (19), 206 (5), 122 (2) and 115 (3) (Found: M⁺, 262.1654. C₂₀H₁₀D₆ requires M, 262.1629).

References

- 1 D. J. Cram and M. J. Cram, Acc. Chem. Res., 1971, 4, 204.
- 2 A. F. Hegarty, in Kinetics and Mechanisms of Reactions Involving Diazonium and Diazo Groups, in The Chemistry of Diazonium and Diazo Groups, Part 2, ed. S. Patai, Wiley, New York, 1978, p. 511.
- 3 For preliminary reports, see N. Mori and T. Tachibana, J. Am. Chem. Soc., 1984, 106, 6115; N. Mori, T. Takemura and K. Tsuchiya, J. Chem. Soc., Chem. Commun., 1988, 575.
- 4 R. H. Hales, J. S. Bradshaw and D. R. Pratt, J. Org. Chem., 1971, 36, 314; J. S. Bradshaw and R. H. Hales, 1971, 36, 318.
- 5 D. T. Longone and J. A. Gladysz, Tetrahedron Lett., 1976, 4559.
- 6 Y. Fukuzawa, M. Kikuchi, O. Kajita and S. Ito, *Tetrahedron Lett.*, 1984, 25, 1505.
- 7 H. Matsuzawa, K. Kozawa, T. Uchida, K. Tsuchiya and N. Mori, Acta Crystallogr., Sect. C, 1989, 45, 1389.
- 8 Henkel & Cie. G.m.b.H., B.P. 807,720/1959 (*Chem. Abstr.*, 1960, 54, 412g). For 1,4-bis(halomethyl)naphthalenes, see G. Lock and R. Schneider, *Chem. Ber.*, 1958, 91, 1770; C. S. Marvel and B. D. Wilson, *J. Org. Chem.*, 1958, 23, 1483.
- 9 S. A. Sherrod, R. L. da Costa, R. A. Barnes and V. Boekelheide, J. Am. Chem. Soc., 1974, 96, 1965.

Paper 0/02687E Received 15th June 1990 Accepted 8th August 1990